

Science Highlights

from the National Synchrotron Light Source

BEAMLINES X7B, X19A

PUBLICATION

D.H. Kim, J. Szanyi, J.H. Kwak, T. Szailer, J.C. Hanson, C. Wang, C.H.F. Peden, "Effect of Barium Loading on the Desulfation of Pt-BaO/Al₂O₃ Studied by H₂ TPRx, TEM, Sulfur K-edge XANES and In-situ TR-XRD," *J. Phys. Chem.*, **110**, 10441-10448 (2006).

FUNDING

U.S. Department of Energy; Office of FreedomCar and Vehicle Technologies; Office of Basic Energy Sciences

FOR MORE INFORMATION

Do Heui Kim, Institute for Interfacial Catalysis, Pacific Northwest National Laboratory do.kim@pnl.gov

Internal combustion engines operating under lean-burn conditions, such as diesel engines, exhibit high fuel efficiency. Removal of harmful NO, emissions from the exhaust in the presence of excess oxygen, however, presents a great challenge to the catalysis community because traditional three-way catalysts are ineffective under these conditions. Among the approaches being considered, urea and hydrocarbon selective catalytic reduction (SCR), and lean-NO traps (LNTs, aka NO storage/reduction (NSR) catalysts or NO adsorbers) are promising technologies. In the LNT technology, an active oxide (alkali

and/or alkaline earth) material takes up NO_x under lean engine operation conditions and stores them as nitrates. In a brief rich cycle, these nitrates are released from the active oxide catalyst component, and reduced to N_2 on the precious metal component of the catalyst.

Because even low concentrations of SO₂ in the emission gradually reduces the ability of the active phase to store NO₂, the

Sulfur K-Edge XANES and TR-XRD Studies of Pt-BaO/Al₂O₃ Lean NO_x Trap Catalysts: Effects of Barium Loading on Desulfation

D.H. Kim^1 , J. Szanyi 1 , J.H. $Kwak^1$, T. Szailer 1 , J.C. Hanson 2 , C. Wang 1 and C.H.F. Peden 1

¹Institute for Interfacial Catalysis, Pacific Northwest National Laboratory; ²Chemistry Department, Brookhaven National Laboratory

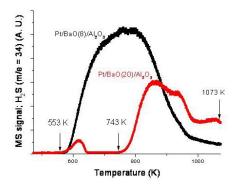
Sulfur K-edge X-ray absorption near-edge spectroscopy (XANES) and in situ time-resolved X-ray diffraction (TR-XRD) are used to show that the removal of sulfur (in the form of BaSO₄) from Pt-BaO(x)/Al₂O₃ (x = wt% BaO) catalysts is strongly dependant on barium loading. Sulfated Pt-BaO(8)/Al₂O₃, consisting predominantly of monolayer BaO/BaCO₃ species, displays more facile desulfation by H₂ at lower temperatures than sulfated Pt-BaO(20)/Al₂O₃, a material containing primarily particulate BaO/BaCO₃ species. This suggests that the initial morphology differences between the two samples play a crucial role in determining the extent of desulfation and the temperature at which it occurs, a result that may be important in developing more sulfur resistant LNT catalyst systems.

resistance of the material to SO₂ poisoning remains a critical issue. Meanwhile, since we have shown that NO_{x} adsorption/desorption chemistry is strongly dependent on the loading of barium, an important question concerns the variation of the desulfation chemistry as a function of barium content in the LNT formulation. As such, we performed a multi-spectroscopy study to understand desulfation processes on Pt-BaO/Al₂O₃ LNT materials with varying barium loadings. In particular, we investigated the desulfation behavior of pre-sulfated Pt-BaO(8 or 20 wt%)/Al₂O₃ catalysts using H, temperature pro-

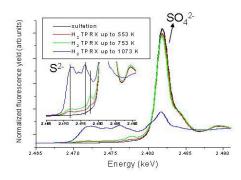
Authors (from left to right) Ja Hun Kwak, Janos Szanyi, Do Heui Kim, and Chuck Peden

grammed reaction (TPRx). These two BaO loadings were chosen because we have previously shown that the Ba-phase morphologies are significantly different; notably, BaO consists of a monolayer 'coating' on the alumina surface in Pt-BaO(8)/Al₂O₃, while this monolayer phase coexists with a 'particulate' or bulk-like BaO phase in the Pt-BaO(20)/Al₂O₃ sample. Thus, we also followed the changes in catalyst morphology and sulfur oxidation states during desulfation processes using synchrotron time resolved x-ray diffraction (TR-XRD) and sulfur K-edge x-ray absorption near-edge spectroscopy (XANES),

> which were performed on the X7B and X19A beamlines at NSLS, respectively.


> Figure 1 shows the H₂ TPRx spectra of sulfated Pt-BaO(8)/Al₂O₃ and Pt-BaO(20)/Al₂O₃ samples, obtained by ramping the temperature of these samples in a H₂/He flow while continually monitoring the product gases with a mass spectrometer. H₂S is the primary product of the reaction between H₂ and

sulfur species on the sample. H₂S is formed at higher temperature for the sample with higher barium loading, implying that the type of barium sulfate species formed upon uptake of SO₂ is different depending on the loading of barium species surface or 'monolayer' sulfates for Pt-BaO(8)/Al₂O₂, and 'bulk' BaSO₄ for the Pt-BaO(20)/Al₂O₃ sample. In addition, the amount of H₂S produced over Pt-BaO(8)/Al₂O₂ is two times larger than that of the sample with higher barium loadings, which suggests a more facile desulfation of 'monolayer' BaSO₄.


Sulfur K-edge XANES experiments were carried out to investigate changes in the oxidation states of sulfur as a function of H₂ reduction temperature. We collected samples after H₂ TPRx up to 553 K, 743 K

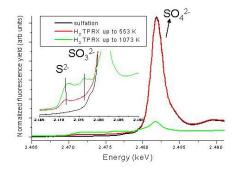

and 1073 K (see arrows in Figure 1). After H₂ TPRx up to 553 K for the sulfated Pt-BaO(8)/Al₃O₃ sample, the spectrum in Figure 2(a) contains a small peak at 2472 eV, which can be assigned to a sulfidelike (S2-) species, while the main sulfate (SO₄²⁻) peak is unchanged. After H₂ TPRx up to 1073 K, the sulfate peaks nearly disappears, while there is an increase in features from lower oxidation state sulfur species (sulfide-like and sulfite-like (SO₃²⁻)). The sulfated Pt-BaO(20)/Al₂O₃ sample shows qualitatively similar behavior as shown in Figure 2(b). However, compared with the sample with lower barium loading, Pt-BaO(20)/ Al₂O₃ contains a significantly larger amount of residual sulfur species of all types after H₂ TPRx up to 1073 K, which is consistent with the H₃ TPRx results.

Figure 3 shows a series of XRD patterns obtained during H₂ TPRx for the sulfated Pt-BaO(20)/Al₂O₃ sample. The room temperature XRD contains peaks assigned to BaSO₄. Up to about 773 K, the BaSO₄ phase is unchanged. However, above 773 K, diffraction peaks associated with BaS appear and continue to grow with increasing temperature, along with a corresponding drop in the intensities of the BaSO₄ peaks. Compared with the Pt-BaO(20)/Al₂O₃ sample, Pt-BaO(8)/Al₂O₃ contains much smaller amounts of BaS, confirming that residual sulfur species were present at much lower concentrations for the lower barium loading sample.

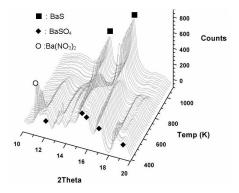


Figure 1. H_2 TPRx spectra for sulfated Pt-BaO(8)/Al₂O₃ and Pt-BaO(20)/Al₂O₃, samples.

Figure 2. Sulfur K-edge XANES spectra of (A) sulfated Pt-BaO(8)/Al₂O₃, and (B) sulfated Pt-BaO(20)/Al₂O₃ samples.

Figure 3. TR-XRD patterns collected during H_2 TPRx from a sulfated Pt-BaO(20)/Al₂O₃ sample.